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Abstract 

Statistical, pattern recognition and cluster analysis studies have been applied to the cumulative 
data base documenting the fabrication, testing and operating history since 1983 of a large 
lead/acid energy storage battery (500 kW h, 324 cells). Results show that fabrication and 
formation parameters have a significant influence on initial measured cell properties and, 
even more importantly, appear to have a continued impact on cell performance throughout 
battery life. Moreover, it appears that performances of individual mature cells can be 
predicted from multivariate analysis of initial fabrication/test data or of routine cell 
maintenance data. Correlations between cluster analysis observations and cell capacity 
trends, and early cell failure occurrences, underscore the value of multivariate analysis of 
fabrication data. The ultimate goal of cell lifetime prediction from initial fabrication/test 
data will be evaluated as large numbers of cell approach failure. 

Introduction 

The objective of this work has been to examine multivariate relationships among 
data obtained during fabrication, maintenance and capacity testing of lead/acid cells 
used in deep cycling energy storage applications, and to evaluate their correlation 
with cell performance and lifetime. This study began with the production of 340 large 
motive power (GNB, Inc., 2080 A h) lead/acid cells. Specifications were established 
by the Electric Power Research Institute. Fabrication materials and procedures were 
documented in detail and associated with individually numbered cells. Cells were 
produced and formed sequentially in batches of 80 cells, and a 5th batch of 20. These 
series-connected formation groups are referred to as circuits 1 to 5. Manufacturer 
data collection also included cell dry/wet weights, specific gravities, amounts of acid 
or water added, as well as capacity and voltage trends during five formation cycles. 

Fifty-four 6-cell modules were installed at the Battery Energy Storage Test (BEST) 
Facility (operated by Public Service Electric and Gas Co. for EPRI), and acceptance 
tests were completed Dec. 7, 1983. The basic performance requirement was to 
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deliver 500 kW h, at 500 kW for 1 h. At this rate the cell capacity limit was set at 
1040 A h. For a 5-h discharge at the 2080 A h cell capacity, 1.2 MW h of stored 
energy could be delivered. The battery was provided with an g-year warranty. The 
modules at the BEST Facility were connected either in a single series string, or in 
three parallel strings of 18 modules each. The battery underwent over 200 intermittent 
test cycles for various utility and customer applications over a 4-year period. Data 
collected during that time included periodic maintenance measurements (specific 
gravities; water adjustments), and periodic capacity checks (cell capacities; float voltages; 
discharge voltage trends). 

In July 1987, the battery was transported to and installed at Crescent Electric 
Membership Corporation (CEMC), Statesville, NC, an area electric power distributor. 
Since that time it has been operated in a peak-shaving environment, to discharge at 
a maximum power of 500 kW for 1 h, or a minimum power of 200 kW for 3 h. 
Periodic maintenance data, cell impedance measurements and cell failure observations 
have been added to the cumulative data base. In addition, capacity test data for a 
carefully selected subset of 109 to 121 of the 340 cells were obtained at CEMC in 
Mar. 1989 and Apr. 1990. Prior to Oct. 1990, only one cell had been bypassed, due 
to low capacity. In Oct. 1990, 44 cells, distributed among 11 modules, were observed 
to exhibit noticeable case swelling. 

Statistical, pattern recognition and cluster analysis studies have been applied to 
the cumulative data base at each stage of the battery’s life: after initial fabrication 
and testing; after cycle testing at BEST; and after more than three years of operation 
at CEMC. Results show that fabrication and formation parameters have a profound 
influence on initial and subsequently measured cell properties. Distinct cell subsets 
in circuits 1 and 3 appear related to known variations in materials, while circuits 2 
and 4 include cell subsets related to physical placement during formation. 

Cluster analysis studies of capacity test data from the BEST Facility showed that 
the same cell subsets identified from earlier examination of initial fabrication/formation 
data were also observed to exhibit common multivariate properties during this early- 
life operation. This suggests that early-life cell performance is impacted significantly, 
and predictably, by known materials/formation variations. Later studies of capacity 
data at CEMC confirmed that these same clusters of cells with common origins continue 
to exhibit similar performance behavior even into the battery’s mid-life period. 

Detailed descriptions of useful data descriptors, cumulative data analyses, ob- 
servations, and conclusions are reported below. 

Desctiption of computer data base 
All data are contained in a SYMPHONYTM data base management system, 

operated on an IBM/AT personal computer system. The entire data base currently 
includes over 50 000 raw data items, plus an equivalent number of computed data 
descriptors. 

Data anarysis methods 
Basic statistical computations (averages, variances, distributions, maxima, minima, 

etc.) and associated graphical procedures were conducted using packages contained 
within SYMPHONY. Multivariate analysis procedures (correlation analysis, cluster 
analysis, pattern recognition and non-linear mapping) were developed for operation 
on the IBM/AT computer and programmed in compiled BASIC (Microsoft). Several 
general references exist for the multivariate analysis techniques used in these studies 
[l-4]. Specific references for the non-linear mapping [5,6] and clustering [7] procedures 
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are also available. A brief introduction to the pattern recognition techniques used in 
this work is provided here. 

Pattern recognition involves the perception of regularities among sets of mea- 
surements describing objects or events. It is concerned with processing large amounts 
of data, the extraction of useful descriptors which concentrate the information content, 
and the development of criteria for examining those descriptors and recognizing the 
different classes to which each object belongs. 

A pattern is defined as a d-dimensional vector composed of d independent 
measurements, and can be represented by: 

P=w~X,+w*x*+w&+... +w&xd (1) 

where x1, x2, x3, . . . xd are components (measurements) of the pattern vector; wl, w2, 
w3, . . . wd are components of the weight vector; d is the number of dimensions. 

Because the raw data vector may be of a large dimension, some reduction of 
dimensionality is desired to obtain reliable classification. Thus, a reduced set of N 
features is extracted from the data which may include combinations and transformations 
of the raw data (where N<d). This reduced feature set should be defined to best 
characterize the distinguishing properties of each class. Numerous systematic techniques 
have been applied to this task of feature selection, including correlation analysis, 
statistical distribution analysis, and empirical methods such as sequential iterative 
feature elimination. 

Pattern classification was done in this work by applying the K-nearest neighbor 
classification rule. That is, the class of an unknown item is determined by the majority 
class of its K nearest neighbors in N-dimensional feature space. K is an odd number, 
usually one. The inter-item distances in feature space are calculated using Euclidian 
geometry, where: 

Qj= 2 (x, -&)’ 
n-1 1 

i, j = specific items, n = index for all features, N= total number of features. 
Procedurally, the appropriate combination of features (and weights) which will 

provide high classification accuracy is found by examining a training set of patterns 
where each item has a known class. When this procedure is completed satisfactorily, 
a prediction set of known patterns can be examined where this set has the same origins 
as the training set, but has not been part of the training procedure. If high accuracy 
pattern classification is also obtained with the prediction set, the classification criteria 
can be considered valid and reliable. It would then be possible to apply these same 
criteria to true unknown items for classification, again provided the unknown items 
have the same origins and the same data structure as the original training set. 

Results and discussion 

Earlier work has been published describing multivariate analysis of battery test 
data and initial attempts at battery lifetime prediction from manufacturer’s fabrication/ 
test data [7, 81. Earlier studies of the GNB battery system have also been reported 
[g-12]. The first of these latter reports [9] contained a summary of all factory data. 
The second report [lo] examined manufacturer’s data to identify inherent clusters of 
cells with common multivariate properties. The third and fourth reports [ll, 121 
examined performances of individual cells during operation of the battery system both 
at the BEST Facility and during the years at CEMC, and observed continued correlations 
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with initial fabrication parameters. This report will examine the battery system as it 
enters the final phase of operations at CEMC; determine whether the same multivariate 
dependence on fabrication parameters continues to describe performance; evaluate 
the performance-predictive information content of routine maintenance data; and 
begin to examine statistically the occurrences of cell failures. In order to do this some 
review of past observations is required. 

Manufacturer’s fabrication/test data 
Several useful descriptors (features) were extracted from the initial data base and 

used for statistical and multivariate data analysis. These descriptors are summarized 
in Table 1. Temperature data were also collected, but were used only for correcting 
specific gravities and capacities to standard conditions (77 “F). 

Statistical analyses of initial fabrication/test data showed that significant differences 
existed for the mean values of 80% of the measured variables among the five formation 
circuits [lo, 111. 

When data from groups of cells from the same formation circuit were examined, 
using multivariate cluster analysis, several strong clusters were observed, depending 
on which groups of features were taken. Particularly strong clustering into two distinct 
subsets was observed for cells in circuit 1 and in circuit 3. Figure 1, for example, 
illustrates the distinct clustering observed in a seven-dimensional feature space. The 
figure is a non-linear mapping [S, 61 (two-dimensional) graphical representation of 
the clustering. From examination of the manufacturer’s documentation, this observed 
clustering could be associated with whether grids or pasted plates were fabricated 
from ‘old’ or ‘new’ stock materials, which were distributed as indicated in Table 2. 
Observed clustering in circuits 1 and 3 closely matched the subsets defined in 
Table 2. 

TABLE 1 

Useful features (descriptors) from factory data base 

Feature Definition 

ASHPA 

AVCAP 

AVSA, AVSB 

CAPSLFA 

DRYWT 

EQWC 

EQWF 

FINLWT 

INDL 

MNCAP, MXCAP 

MNSA, MXSA 

RELFRMA 

RNGCAP 
RNGSA 

SGA, SGB 

SG2 

SG4 
SHPSLFA 

Final acid adjustment before shipping 

Average capacity over 5 test cycles 

Average SGA, SGB, over 5 test cycles 

Total acid in cell before 5th test cycle 
Cell weight before acid addition 

Acid added (equalization) before 5th cycle 

Acid added in formation equalization step 

Total weight of cell after formation equalization 
AVCAP/RNGCAP 

Minimum/maximum capacity of 5 test cycles 

Minimum/maximum SGA over 5 test cycles 

EQWF/(FINLWT-DRYWT) 

(MXCAP-MNCAP) 

(MXSA-MNSA) 

Specific gravity after/before discharge each cycle 

Specific gravity prior to formation equalization 

Specific gravity prior to 5th cycle equalization 
Total acid in cell as shipped 
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Fig. 1. Non-linear mapping (NLM) of seven-dimensional feature space for fabrication/test data, 
GNB cells, circuit 3 only. Mapping data for even-numbered cells (162-24(l), identified as 2-80. 
A = new/new grid/paste; B = old/new grid/paste. Features: DRYWT, EQWF, MXCAP, MNCAP, 
AVCAP, MXSA, RNSGA. 

TABLE 2 

Summary of materials changes for GNB cells 

Subset Circuit Cells Grid Pasted 
plate 

(4 
(b) 

1 l-15 old old 
1 16-80 old new 
3 161-218 old new 
3 219-240 new new 

It should be pointed out that these observed variations within groups of cells 
fabricated and formed under presumably uniform conditions were not anticipated. 
The known variations in fabrication materials were not expected to contribute to any 
significantly different cell properties, as all batches of materials met procurement 
specifications for chemical and physical characteristics. Thus, their clear impact is a 
significant observation, perhaps warranting closer scrutiny in the future. 

Examination of initial test data for cells from circuits 2 and 4 was of interest 
because there were no known changes in fabrication materials or procedures within 
these circuits. Cluster analysis, however, revealed distinct cell subsets with common 
multivariate properties. Figure 2 illustrates the clustering observed in a six-dimensional 
feature space. The cell groups selected for highlighting were those identified first by 
hierarchical clustering methods [7]. Examination of fabrication procedures showed that 
the different clustered subsets of cells could be associated with physical placement of 
those cells during formation cycles. Cells from interior locations (group A) of formation 
circuits tended to cluster together and separately from cells of outer locations 

(group B). 
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Fig. 2. Non-linear mapping (NLM) of six-dimensional feature space for fabrication/test data, 
GNB cells, circuit 2 only. Mapping data for cells 81-120, identified as l-40. A = interior cells; 
B =exterior cells. Features: SG2, EQWF, MNCAP, AVCAP, AVSA, RNSGA. 

lo2 0 34 68 102 136 170 204 236 306 340 

Cell number 

Fig. 3. Individual GNB cell capacities measured at BEST Facility, Jan. 1986. Groups A-E 
correspond to cells from original formation circuits 1-5. Discharge current, 346.6 A, 1.7 V cutoff. 
Capacities corrected to 2.5 “C. 324 total cells tested. 

Data from BEST qcle testing 
Battery maintenance data (electrolyte levels, water additions, specific gravities, 

cell float voltages and impedances) were obtained periodically during operation of the 
GNB 500 kW h battery at the BEST Facility from 1983-1987. In addition, a full 
capacity test was conducted in Jan. 1986, and data obtained included voltage-time, 
cumulative A h versus time, specific gravities before and after cycling, and float voltage 
levels. Capacity values were obtained with procedures identical to those used initially 
at GNB. 

Figure 3 illustrates the underlying dependence of capacity on cell (and circuit) 
number. The increasing capacity can be associated with a learning curve in the 
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manufacturing process, as circuit 1 represents the first batch of cells produced, whereas 
circuit 5 represents the last batch. There were documented [9] changes in fabrication 
procedures (most notably in the amount of acid added) between cells for circuits 1 
and all following circuits. (For circuit 1 cells the initial acid fill provided a specific 
gravity of 1.230, whereas specific gravity for cells of circuit 2-5 was 1.260. All cells 
were adjusted to 1.285 before shipment.) In addition, the oldest materials on hand 
were used for cells in circuit 1 (Table 2). 

Multivariate cluster analysis was applied to the BEST capacity test data, using 
features selected from the data descriptors defined in Table 3. All of the cluster sets 
revealed by analysis of factory data or BEST capacity data, along with the feature 
sets eliciting each cluster, are summarized in Table 4. Groups Gl-G4 were observed 
initially from factory data. Groups G5-G7 were observed from BEST capacity test 
data. Groups Gl, G3 and G4 were also observed with features selected from the 
BEST capacity data. Thus, clustering associated with changes in fabrication materials 
(groups Gl and G3) continued to be observed in the BEST data. (Figure 4 illustrates 
obvious clustering of cell capacities related to fabrication materials changes in 
circuit 3). Clustering related to variations in physical placement during formation 
(groups G2 and G4) was less pronounced for the BEST data, suggesting that perhaps 
this factor became less important during early cell life. The significance of the new 
clusters (G5-G7) observed from analysis of the BEST capacity test data is not yet 
understood. There are no known material variations associated with these clusters. 
Possible common environmental effects may be a factor (e.g. for group G7, the two 
cells are positioned adjacently at the negative terminal of one of three 10%cell strings). 

Data j?om CEMC operations 
Battery maintenance data were collected at CEMC as described for the operation 

at the BEST Facility. In addition, capacity tests were conducted in Mar. 1989 and 
Apr. 1990, with data collected in the same manner as for the 1986 test at the BEST 
Facility, except that only a selected group of 109-121 of the 324 operating cells was 
monitored. This subset was carefully selected to be representative of all cluster groups 
previously observed (Table 4), as well as to provide appropriate ‘control’ sets with 

TABLE 3 

Useful features (descriptors) from capacity test data 

Feature Definition 

NCAP 
NFVLT 
NVxxx 
NSGB, NSGA 
DLCPNN 

NDLVx. y 

Cell capacity during test cycle N 
Float voltage after test cycle N 
Cell voltage at .ux % nominal capacity 
Specific gravity before/after discharge N 
Capacity change from one capacity test to 
the next 
Cell voltage change beyond nominal capacity, 
where x, y= 8, 5, 0 for 108, 105, 100% 
capacity 

where N= 
F, from fabrication/test data 
B, from BEST capacity test cycle 
C, from CEMC capacity test cycle 
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TABLE 4 

Cell clusters observed from factory and BEST data 

Group Subsets Cluster analysis features 

Gl 
(Circuit 7) 
G2 
(Circuit 2) 
G3 
(Circuit 3) 

grcuit 4) 

&cuit 1) 

Ercuit 2) 

G7 
(Circuit 2) 

O/O grid/paste 
O/N grid/paste 
outer cells 
inner cells 
O/N grid/paste 
N/N grid/paste 
outer cells 
inner cells 
6-cell cluster 
(17, 21, 25, 36, 65, 

74) 
9-cell cluster 
(81, 82, 124, 128, 
137, 139, 142, 143, 
155) 
2-cell cluster 
(105, 109) 

DRYWT, AVSA, EQWF, SG4 

SG2, EQWF, MNCAP, 
AVCAP, AVSA, RNGSA 
DRYWT, EQWF, MXCAP, MNCAP, 
AVCAP, MXSA, RNGSA 
SG2, EQWF, MNCAP, AVCAP, 
AVSA, RNGSA 
BCAP, DLCPBF, BFVLT, 
BV108, BDLV8.0 

BCAP, BV108, BDLV8.0 

BCAP, DLCPBF, BFVLT, 
BV108, BDLVS.0 

113 

1 111 

,R 
n 110 

L7l 

: 109 

107 

106 

180 13o 200 220 240 

Cell No. 

Fig. 4. Individual GNB cell capacities measured at BEST Facility, Jan. 1986, formation 
circuit 3 cells. 80 cells, 161-240. (See Table 2 for sub-sets.) 
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which each cluster group could be compared. Thus, statistically sound conclusions 
could be made regarding observed differences in behavior of previously identified cell 
clusters. Our discussion will focus on capacity data as the primary performance indicator. 

Distributions 
Capacity values appear normally distributed with a single maximum in each 

distribution for the 450 A discharges conducted in Mar. 1989 and Apr. 1990 (see Fig. 
5(a) and (b)). The absence of any obviously unusual structure in the overall capacity 
distributions does not preclude the existence of sub-groups of cells with uniform but 
distinctive properties (see discussion below). 

Statistical tests 
Table 5 summarizes the results of examining performance, in the CEMC capacity 

tests, of the various cell subsets identified in earlier capacity tests (Table 4), and 
comparing them with ‘control’ sets. The purpose was to determine if groups of cells 
identified as having common initial properties, based on multivariate cluster analysis 
of data collected at the beginning of life, would continue to exhibit distinctly different 
performance characteristics at this stage of their lifetime (67 years). 

Procedurally, each cell cluster of interest (identified as groups G&G7 in 
Table 4) was compared either with another known cluster of cells taken from the 
same fabrication circuit, or with an appropriate ‘control’ subset, to determine if there 
was a significant difference in average capacity values between compared sets. (Control 
sets were composed of cells from the same fabrication circuit, which were known from 
previous cluster analysis studies to not be part of the cell cluster of interest, nor of 
any other observed clusters.) The statistical test used was Student’s t-test, evaluated 
at the 95% confidence level [13]. 

The 1989 results in Table 5 examine the mid-life behavior of the GNB cells, and 
indicate that, in all but 2 cases, capacity values for the previously identified cluster 
groups were significantly different from control sets. Two exceptions are those clusters 
previously associated with inner/outer locations in formation corrals. Thus, it appears 
that the effects of material variations on performance continued to be observed; the 
performance variations related to environmental factors during early life (BEST data) 
also continued to be observed; and the effects of physical placement during formation 
became less important during mid-life operation. 

The 1990 results in Table 5 examine cell behavior as the battery entered the end- 
of-life phase of operation. Statistical test results were virtually identical to those from 
1989, except that for group G5 there was no longer a significant difference in capacities 
between the previously observed cluster and the control set. It is important to note, 
however, that the material-dependent clusters (groups Gl and G3) continue to show 
a significant difference in performance even as the cells approach end-of-life. 

Pattern recognition performance prediction 
One of the primary objectives of this study has been to determine if it is possible 

to predict individual cell performance from multivariate examination of initial fabrication/ 
test data or periodic maintenance data. In the first case, the benefit would be that 
predicted better- or worse-performing cells could be identified at the outset and pre- 
selected for appropriate applications. More importantly, identification of those fabrication 
parameters affecting performance variance should have a positive impact on manu- 
facturing practices. 

From the results of cluster analysis studies described above, where capacity was 
the performance measure used, there appear to be sub-groups of cells within the same 
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Fig. 5. Distributions of GNJ3 cell capacities. Discharge currents, 450 A, 1.7 V cutoff; capacities 
corrected to 25 “C. (a) Capacity test at CEMC, Mar. 1989, 109 cells; (b) capacity test at CEMC, 
Apr. 1990, 121 cells, including all cells from (a). 

batches (circuits) which have significantly different performance than other sub-groups. 
These sub-groups were identified by unsupervised multivariate cluster analysis; but 
these results suggest what measured properties (features) might be useful for pattern 
recognition prediction of cell performance in a supervised procedure, i.e. predicting 
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TABLE 5 

Statistical differences in means of suspected cell clusters vs. control groups in CEMC capacity 
test. Mar. 1989 and Apr. 1990. t-Test applied at 95% confidence level 

Group Cell 
subsets 

Capacity (%) av. &s.d. 

1989 1990 

Significant 
difference 

1989 1990 

Group Gl 
(Circuit 1) 
Group G2 
(Circuit 2) 
Group G3 
(Circuit 3) 
Group G4 
(Circuit 4) 
Group G5 
(Circuit 1) 
Group G6 
(Circuit 2) 
Group G7 
(Circuit 2) 

O/O grid/paste 
O/N grid/paste 
outer cells 
inner cells 
O/N grid/paste 
N/N grid/paste 
outer cells 
inner cells 
observed cluster 
control set 
observed cluster 
control set 
observed cluster 
control set 

93.8 f 0.9 101.7* 1.2 
92.5 f 1.2 99.0 f 1.9 
93.6k1.3 101.7+0.7 
93.8 + 2.3 100.9 + 2.3 
93.5 f 1.6 99.4 * 1.5 
97.8 f 2.2 102.2+2.3 
98.8 f 2.7 104.1*3.1 
96.8 + 2.6 103.0f2.5 
90.7 f 1.5 97.0 + 1.1 
92.5 f 1.2 99.0 * 1.9 
97.2 + 0.4 103.6 & 0.7 
94.4 + 1.6 101.9+ 1.5 
87.2 50.6 96.2 f 0.2 
94.6+1.7 102.3 + 1.2 

yes 

no 

yes 

no 

yes 

yes 

yes 

yes 

no 

yes 

no 

no 

yes 

yes 

Nos. of cells in each subset were: Gl(6, 18); G2(5, 6); G3(11, 12) (1989) (11, 18) (1990); G4(15, 
10) (1989), (19, 12) (1990); G5(4, 18); G6(5, 26); G7(2, 21) (1989), (2, 15) (1990). 
Refer to Table 4 for designated cluster groups. 

performance of new cells based on known multivariate distributions of previously 
observed performance of similarly manufactured cells. This possibility is explored here 
with the GNB battery data and results are discussed below. 

The possibility of using periodic maintenance data for predicting subsequent cell 
performance is intriguing also because, if successful, this strategy might substitute for 
periodic cell capacity tests, or provide early indication of imminent cell failures in 
large battery installations where capacity tests are not practical. Because of the extensive 
detailed maintenance data base accumulated for the GNB battery over its lifetime, 
this kind of data analysis was attempted, and the results are discussed here. 

Performance prediction from maintenance data 
The data base examined so far includes all maintenance data (float voltages, 

specific gravities, water added, electrolyte levels) collected quarterly between Aug. 
1987 and Feb. 1990. Multivariate analysis methods were used to determine if cell 
capacities, obtained in Mar. 1989 and Apr. 1990, could be predicted from the preceding 
maintenance data. 

The utilization of multivariate analysis techniques was dictated by the fact that 
no obvious univariate correlations existed between the maintenance data and cell 
capacities. The techniques used included: correlation analysis, K-nearest neighbor 
pattern recognition and non-linear mapping (see ‘Introduction’ and refs. l-6). 

The feasibility of pattern recognition performance prediction was tested, first, by 
creating a training set of maintenance data collected prior to the Mar. 1989 capacity 
test at CEMC. The maintenance data were organized into a SYMPHONYrr”’ data 
base containing 38 different descriptors for each cell. These descriptors included: float 
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voltage (CELVOLT), specific gravity (SPGR), water added (WATER) and electrolyte 
level (LEVEL), collected quarterly between Aug. 1987 and Feb. 1989 (24 total 
descriptors), as well as 14 computed or combined descriptor values (average values: 
AVGVLT, AVSPGR, AVWAT, AVLVL), (trends: DVL2/1, DVL7/1, DSG2/1, 
DSG7/1, DW7/1, DLEV2/1, DLEV7/1), (combined values: ASG*AVL, AVL/ASG, 
PVLT). Where ‘ASG’ and ‘AVL’ refer to AVSPGR and AVGVLT, the average values 
of specific gravity and cell voltage over the preceding four maintenance events. Trend 
values (‘d/M’) refer to differentials between the Nth and Mth quarterly maintenance 
events preceding the capacity test (e.g. for this training set, ‘DVL2/1’ refers to the 
change in cell voltage between the next last and last quarterly maintenance measurements, 
Nov. 1988 and Feb. 1989.) ‘PVLT’ defines a feature obtained from the product 
of measured cell voltages over four maintenance quarters preceding the capacity 
test. 

Obviously, many additional computed/combined descriptors might be defined, and 
future work will consider this. However, this initial set of 38 descriptors was deemed 
sufficiently representative of maintenance data variance for initial pattern recognition 
studies. 

The first step involved selecting a manageable subset of descriptors (features) for 
pattern recognition. Arbitrarily the maximum number of features examined at one 
time was limited to 15. Thus, correlation analysis was conducted first to determine 
which features were highly correlated, so that redundant features could be eliminated. 
All features were normalized to the same numerical scale by autoscaling [3, 71. This 
step was followed by pattern recognition studies designed to separate maintenance 
data patterns into one of three classes: high capacity, low capacity, and intermediate 
capacity cells. Less useful features for this function were likewise eliminated until a 
minimal useful set of features was obtained. 

To determine if maintenance patterns could classify cell performance, the cells 
were rank ordered according to capacity (measured 3/89). Those cells with capacity 
values > (av. + 1 s.d.) were assigned to class 1 (high); those cells with capacity < (av. - 1 
s.d.) were assigned to class 2 (low); those in between were assigned to class 3 
(intermediate). The average value for 109 cell capacities (3/89) was 95.0%; the s.d. 
was 53.1%. Thus, class 1 cells (17) had capacities > 98.1%; class 2 cells (14) had 
capacities <91.9%; class 3 cells (78) had capacities from 91.9 to 98.1%. For pattern 
recognition purposes class 3 was reduced to only 14 representative cells in order to 
have three nearly equal size classes. 

A pattern set which included only class 1 and class 2 cells was examined first, 
in order to identify those features which could readily discriminate between high- and 
low-capacity cells. Pattern recognition results for the two-class set showed that several 
different combinations of maintenance features could classify cells into high-or low- 
capacity classes with 100% accuracy. The various feature sets giving this high accuracy 
are listed in Table 6. 

The results for the three-class pattern set are summarized in Table 7. They showed 
that overall classification accuracy as high as 83% could be obtained with as few as 
four features. Not surprisingly, the overall accuracy is not as good as for the two- 
class set. This is probably because the boundaries between the high/low-capacity classes 
and the intermediate class are somewhat diffuse. This can be seen in the non-linear 
mapping displays of the feature spaces used for pattern recognition (Figs. 6(a) and 
(b)). Figure 6(a) shows a clear-cut discrimination between class 1 and class 2 patterns 
in feature space, whereas Figure 6(b) shows that the intermediate class 3 patterns 
tend to extend beyond the boundaries of both class 1 and class 2 patterns. 
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TABLE 6 

Pattern classification training results for two-class pattern set. Maintenance data collected prior 
to Mar. 1989 capacity test 

Overall 
classification 
accuracy 
(%) 

Classification accuracy (%) 

Class 1 Class 2 

Features used 

loo 100 100 
100 100 100 
100 100 100 

100 100 100 

PVLT, DVL7/1 
CELVOLT(2), SPGR(3) 
[PVLT/(DVL7/1)], DSG7/1, DLV2/1, 
AVGVLT, AVSPGR 
CELVOLT(l), ASG*AVL, AVL’ASG, 
WATER(7), LEVEL(3) 

Total patterns = 28. 
Class 1= high capacity cells (14). 
Class 2= low capacity cells (14). 

TABLE 7 

Pattern classification training results for three-class pattern set. Maintenance data collected prior 
to Mar. 1989 capacity test 

Overall 
classification 
accuracy 
(%) 

81 

81 
83 

83 

Classification accuracy (%) Features used 

Class 1 Class 2 Class 3 

92.9 78.6 71.4 

100 71.4 71.4 
100 78.6 71.4 

85.7 85.7 78.6 

DW7/1, CELVOLT(Z), CELVOLT(l), 
ASG*AVL 
PVLT, DVL2/1, DW7/1, CELVOLT(3) 
DVL2/1, DW7/1, CELVOLT(l), 
ASG*AVL, WATER(2) 
CELVOLT(Z), WATER(4), 
WATER(2), AVLVL 

Total patterns: 42. 
Class 1 = high capacity cells (14). 
Class 2=low capacity cells (14). 
Class 3 = intermediate capacity cells (14). 

In order to distinguish between fortuitous and meaningful pattern recognition, 
prediction sets of maintenance data were examined. Here, the maintenance data 
preceding the Apr. 1990, capacity test were subjected to pattern recognition analysis, 
using the specific feature sets found useful for classifying the cells from the maintenance 
data preceding the Mar. 1989 capacity test (see Tables 6 and 7). The important 
difference for the ‘prediction’ procedure is that the feature sets represent new data, 
not previously seen by the pattern recognition programs. Thus, the criteria for pattern 
recognition are based on the feature definitions and combinations useful for the training 
set data. If these same features are useful also for the prediction set data, and 
accurately discriminate among the classes of cells, this is a significant observation. 
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This would indicate that accurate pattern classification is not fortuitous, and is probably 
based on a real multivariate relationship between measured maintenance data and 
observed cell performance. 

The Apr. 1990 average capacity (450 A discharge) was 101.5%, +2.8% standard 
deviation. Thus, the two-class prediction set contained those cells whose 4/90 capacity 
was > 104.3% (class 1) or <98.7% (class 2). For this preliminary study, only those 
cells were included in the prediction set which were in the same classes (1 or 2) in 
both the 1989 and 1990 capacity tests; thus, because of this criterion and differing 
distributions, there is a slight difference in total numbers of cells analyzed in Tables 
6 and 8 (28 versus 23). 

When the two-class prediction set based on 4190 capacity results and the pre- 
(4/90) maintenance data was examined using the same feature sets identified as useful 
in Table 6, classification accuracy varied from about 56% to 96%. These results are 
summarized in Table 8. When a three-class prediction set based on 4/90 capacity 
results and the pre-(4/90) maintenance data was examined using the same feature sets 
identified as useful in Table 7, meaningful classification was not obtained. 

Observations 
It is very encouraging that nearly 100% prediction classification was achieved for 

the two-class prediction set with one feature set (Table 8). This suggests that performance 
classification information is indeed contained in the kind of data obtained from quarterly 
maintenance of flooded lead/acid cells. The inability to accurately predict cell per- 
formance divided among three classes is not surprising, considering the fuzzy boundaries 
illustrated in Fig. 6(b). The most important observation to be made at this point, 
however, is that cell capacity information sufficient to distinguish between the best 
and worst performers is most certainly contained in the maintenance data, and that 
multivariate analysis is effective in extracting that information. 

Because the results given here are only preliminary, it is likely that the classification 
results for the three-class problem will improve considerably with further examination 
of other possible feature sets and class boundaries. A detailed description of a more 

TABLE 8 

Pattern classification prediction results for two-class pattern set. Maintenance data collected 

prior to Apr. 1990 capacity test 

Overall 
classification 

accuracy 

(%) 

Classification accuracy (%) 

Class 1 Class 2 

Features used 

76.2 60 92.3 
55.8 50 61.5 
96.2 100 92.3 

77.3 70 84.6 

PVLT, [(DVL7/1)*(DVL2/1)] 
CELVOLT(2), SPGR(3) 
[PVLT/(DVL7/1)], DSG7/1, DLVUI, 
AVGVLT, AVSPGR 
CELVOLT( l), ASG*AVL, AVU 

ASG, WATER(7), LEVEL(3) 

Total patterns: 23. 
Class l= high capacity cells (10). 
Class 2=low capacity cells (13). 
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complete study of pattern recognition performance prediction based on routine main- 
tenance data will be presented in a separate publication [14]. 

Performance prediction from initial fabricationftest data 
The purpose of this study was to determine if cell performance at particular stages 

during its operating lifetime could be predicted from multivariate analysis of initial 
manufacturer’s data. The data base examined is the same as that used for cluster 
analysis studies discussed here and elsewhere [lo, 111, using the descriptive features 
summarized in Table 1 which led to the kinds of observations summarized in 
Figs. 1 and 2 and Table 4. The supervised pattern recognition procedure, however, 
involved the assignment of each cell in a given circuit to a performance class based 
on known capacity test values. 

The cells were rank ordered according to capacity (measured 4/90), with the same 
class boundaries defined for the maintenance data study. Pattern recognition training 
results for the two-class pattern set showed that a large number of feature sets could 
be found from the list in Table 1 which provided as high as 94.9% overall accuracy 
for identifying cells as class 1 or 2. The most consistently useful features were (refer 
to Table 1): AVSB, SHPSLFA, EQWC, ASHPA, SG2, EQWF, RELFRMA, AVCAP. 
As few as 4 or 5 features were required for classification. 

Pattern recognition training of a three-class pattern set was conducted, again with 
the same boundaries as defined earlier for the maintenance data study. The results 
showed that overall classification accuracy as high as 76% could be obtained with as 
few as four features. In addition, some feature sets were obtained which would provide 
high accuracy for classifying class 1 and class 2 cells (high/low), while poorly classifying 
class 3 cells (intermediate). The value of these latter feature sets is to provide a high 
probability of identifying the high/low capacity cells, while the most probable ‘false 
positives’ would be intermediate capacity cells. 

When the feature spaces associated with the best two-class and three-class pattern 
recognition results described above are displayed using a non-linear mapping algorithm, 
the feature plots in Fig. 7(a) and (b) are obtained. It is very clear from these displays 
that the high- and low-capacity cells are well separated in feature space (Fig. 7(a)). 
However, Fig. 7(b) shows that, although the three different classes of cells are distributed 
separately in feature space, the clusters do overlap somewhat (leading to poorer 
classification accuracy). 

Observations 
The most important observation to be made at this point is that late-life cell 

capacity information is most certainly contained in manufacturer’s initial fabrication/ 
test data, and that multivariate analysis is effective in extracting that information. This 
conclusion is clearly established in the two-class pattern recognition training results 
and the feature space plots of Fig. 7. 

Because the results given here are only preliminary, it is expected that the 
classification results for the three-class problem will improve considerably with further 
examination of other possible feature sets and class boundaries. The results are 
very encouraging, and more detailed studies and results will be reported elsewhere 

1151. 

Global observations 
It is appropriate now to consider some global aspects of the GNB battery study, 

incorporating observations related to the entire lifetime of the cells to date. 
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Capaciq trends 
Capacity data were obtained for the GNB 500 kW h lead/acid battery over the 

period 1983 (manufacturer’s capacity test), through 1986 (BEST Facility capacity test), 
to 1989-1990 (CEMC capacity tests). Examination of these data reveal several problems 
for the definition of meaningful trends. First, the discharge currents used for 1989-1990 
tests are different than the 1983-1986 tests (450 A versus 346.6 A). Second, not all 
cells have undergone capacity tests at CEMC (for economic reasons). 

For the trend analysis reported here capacity data for four separate periods of 
battery lifetime have been included: CAP(I) (initial, all cells) from the 5th and final 
acceptance cycle, GNB, Sept. 1983 [9]; CAP(I1) (early life, end-of-formation, all cells) 
obtained at the BEST Facility, Jan. 1986); CAP(II1) (mid-life, 109 cells) obtained at 
CEMC, Mar. 1989: CAP(IV) (beginning end-of-life, 121 cells) obtained at CEMC, 
Apr. 1990. 

There are other capacity data which have not been included in these summaries 
because they are redundant with those above, or because they are unsuitable for trend 
analysis (different cell groups or very different conditions). 

Table 9 summarizes the trends in average cell capacity observed over the four 
time periods defined above. Only the data for the common subset of 109 cells are 
included in this Table. The capacities are corrected for initial cell temperatures (NEMA 
Publication IB 2, l/17/74) and for variations in discharge current levels (GNB Technical 
Proposal, Nov. 15, 1982). 

It is clear that the variance in average capacity from test to test includes contributions 
other than temperature and discharge current variance. In order to examine capacity 
trends for individual cells, the contributions to absolute capacity differences due to 
variations in test conditions (for example, different usage by CEMC prior to capacity 
tests) were minimized by obtaining ‘normalized capacity values’. These were computed 
by taking the ratio of the observed cell capacity to the average capacity of all cells 
obtained on the specific date. It is the normalized values that were used to examine 
trends. 

Trend analysis involved computing a linear regression fit to the time dependence 
of normalized cell capacities, and obtaining the slopes for each cell. Figure 8(a) shows 
the overall distribution of cells with different capacity trend slopes (%/year). Figure 
8(b) shows the dependence of the capacity trend slopes on cell number. It is clear 
that a bimodal distribution exists. The average slope for change in normalized capacity 
is slightly positive (+0.42%/yr.) for cell nos. 2-147; and slightly negative for cell nos. 
172-319 (-0.53%/yr.). These observations are consistent with the fact that earlier 

TABLE 9 

Average capacities (%), for 109-cell subset monitored from 1983 to 1990, GNB 500 kW h battery 
(adjusted to 77 “F and to 346.6 A) 

Test no. 

I II III IV 

Average capacity 

(%) (adj.) 

99.2 109.4 102.6 109.6 

Standard deviation *3.5 + 2.9 +3.1 k2.8 

100% capacity=2080 A h. I (9/83); II (l/86); III (3/89); IV (4/90). 
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Fig. 8. Distributions of capacity trend slopes (%/yr.) for GNB cells. Normalized capacities, 
109~cell subset monitored, 1983-1990. (a) Overall distribution; (b) distribution by cell number. 

numbered cells were less completely formed at the factory in 1983 than the latter 
cells [9]. Thus, the former cells continued to grow in (normalized) capacity through 
most of their life to date, whereas the latter group of cells have diminished in 
(normalized) capacity. 



In order to identify those cells which are changing significantly in (normalized) 
capacity within each of the two subsets identified in Fig. 8, the trend data were 
examined with respect to the different average trends for the two subsets (subset A, 
cell nos. 2-147; subset B, cell nos. 172-319). These relationships are illustrated in 
Fig. 9, which plots the difference between the observed trend slope and the average 
slope within each of the two regions. Obviously, this transformation leads to a more 
‘normal’ distribution (not bimodal). The list of cells with ‘relative’ slope for normalized 
capacity trend steeper than *0.8%&r. is given in Table 10. 

Cell expansion observations 
Forty-four of the GNB cells were observed in Oct. 1990 to have expanded 

noticeably. Five of these exhibited a separation of jar and lid. These observations are 
summarized in Table 11. None of the cells has failed to deliver adequate capacity, 
and all have been retained in service until capacity failure is observed. 

Some preliminary observations can be made regarding the occurrences of expanded/ 
separated cells. 

(i) There is a skewed distribution of swollen cells. The total observed (44) is 
13.8% of the 319 cells previously in operation. However, 65.9% of these are for cell 
numbers above 194. 

(ii) Sixteen swollen cells (36.4%) come from formation circuit no. 3 (161-240) 
and there is a significant disparity in distribution between the two main cell sub- 
groups from that circuit (see Table 2). The distributions of swollen cells between these 
two groups are: group (c) (7 swollen cells of 58) 12.1%, and group (d) (9 swollen 
cells of 22) 40.9%. 

(iii) The swollen cells appear in groups of adjacent cells in the same modules. 
This may be an indication of environmental factors; or that one or more weaker cells 
in a given module catalyze the degradation of other cells in that module; or of non- 
uniform conditions established at individual modules (e.g. undetected shipping damage). 

(iv) It may be significant that 30% of those cells listed in Table 10 with large 
negative relative slopes for normalized capacity trend are among the 44 expanded 
cells. 

To determine whether a truly random distribution of swollen cells is occurring, 
the chi-squared statistical test [13] was applied. The chi-squared test determines whether 
or not a given frequency distribution is consistent with a normal Gaussian distribution, 
within some prescribed confidence level. For the CEMC battery observations, the 
expected frequency of observed swollen cells per module would be 441.54, if the 
distribution were completely random. That is, an average of 0.81 swollen cells/module 
should be observed. The chi-squared computation compares the actual distribution to 
the predicted random distribution. The calculated chi-squared value is 192.2. The 
tabulated value is 75 at 95% confidence level, 53 degrees of freedom (d.o.f. = no. of 
modules - 1). 

Thus, the observed chi-squared value far exceeds the tabulated value, indicating 
a significant deviation from a predicted random distribution of swollen cells. This 
observation provides a sound basis for stating that the occurrences of swollen cells 
are not random; that the above remarks regarding correlations with previously observed 
fabrication/test data are certainly warranted; and that further consideration is justified 
of other possible factors (such as undetected shipping damage) affecting this non- 
random distribution. These observations are very preliminary. There is probably a 
combination of factors affecting the occurrence of swollen cells. Studies of multivariate 
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Fig. 9. Distributions of capacity trend slopes for GNB cells (%/yr.), relative to average slopes 
in two subsets, cells 2-147 and 172-319. Normalized capacities, 109-cell subset monitored, 
1983-1990. (a) Overall distribution, showing contribution of each subset; (b) distribution by cell 
number, showing each subset. 



TABLE 10 

Cells identified as having relative normalized capacity trend slopes greater than +0.8%&. 
Relative slopes compared to average slopes in cell group A (2-147) or cell group B (172-319) 

Slope Cell number 

> +0.8%/yr. 14, 70, 86, 99, 239, 246, 262, 273, 297, 303, 307 
< - 0.8%/yr. 22, 28, 60, 91, 231, 233, 244, 248, 316, 319 

TABLE 11 

Summary of observed expanded and separated cells; GNB 500 kW h battery, CEMC operation, 
Oct. 1990 

Separated cells Expanded cells 

Module Cell no. Module Cell no. 

2 27, 39 2 
22 62 22 

25 
29 
30 
32 
40 
42 
48 

49 286, 287 49 
50 

26, 27, 30, 37, 38, 39 
40, 59, 60, 62, 63 
128, 129, 130, 132 
195, 197 
198, 199, 200, 208, 211 
224, 225, 226, 228 
205, 206 
231, 233, 235 
277, 278, 279, 284 
285, 286, 287, 291, 294, 295, 296, 297, 299 

correlations with initial fabrication/test data, with periodic capacity test data, and with 
routine maintenance data might expose the underiying contributing factors. 

GNB viewpoint 
From a practical standpoint, the observed performance differences are small, and 

are based on capacity data. These may not be noticed in normal operation, as the 
battery will seldom experience such a sustained discharge. In any event, capacity values 
have nearly always been greater than 90%. 

Observed ‘expansion’ of some cells is in the stack-up direction of the cell. Thus, 
the corrosion of grids over the last seven years has not resulted in grid growth (increase 
in width or height of the grids) to such an extent as to cause bulging of the jar. It 
is conceivable that the grid design, with its diamond pattern, accommodates growth 
much better in the width and height than in the thickness direction. Grid growth in 
the thickness direction can cause an increase in the stack-up dimension of the plates 
which might explain the observed ‘expansion’ of the cell. However, one would expect 
such growth to occur in all cells and not in just 14-U% of the cells. 

An alternate explanation for ‘expansion’ is that the tray walls are unable to contain 
the static pressure in the cell. The 54” span of the side walls of each module were 
tied together using two keyed partitions located one-third of the way from the end 
walls. The partitions were made of plywood and coated with resin. With age the keyed 
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locking may have degraded, allowing the walls to bulge at the center. This and the 
grid growth theory for expansion can be verified and quantified through a tear-down, 
which will be conducted by GNB, at a suitable time. 

Conclusions 

The observations made on GNB capacity test data obtained during initial and 
early-life operation are very striking for several reasons: (i) the cell subsets examined 
would not have been singled out at all except for the indications from cluster analysis 
studies done on initial fabrication test data and early-life cycle test data; (ii) the initial 
cluster analysis studies did not indicate whether future performance of the clusters 
would be affected, as now observed; and (iii) there is now strong evidence that 
multivariate cluster analysis studies of initial fabrication test data can predict clustering 
of cell properties well into their useful lifetime. More importantly, these studies now 
provide a foundation for interpretation of ultimate cell failure data. 

We can only speculate at this time that some of the observed clustering from 
initial fabrication/test data will correlate ultimately with cell lifetimes, and that the 
associated features are lifetime predictive. Encouragingly, our earlier work with NiCd 
[7] and (Bxide EV-106) lead/acid [8, lo] cells successfully demonstrated pattern 
recognition lifetime prediction from initial test data. 

The results of preliminary studies of pattern recognition performance prediction 
from examination of routine maintenance data or initial manufacturer’s data are very 
encouraging. We expect that more detailed studies of these data sets will identify 
multivariate relationships which may be generally useful for lead/acid cells. 

Regarding the benefits of this work, the relationships examined in this study, 
between process variables and performance variations observed in applications, provide 
important information to battery companies. Reduction in such performance variations 
is mutually desirable to both manufacturer and customer, particularly for applications 
to large battery arrays. Users of very large battery arrays, such as utilities in load/ 
power management applications, can use multivariate analysis studies like ours to gain 
early identification of problems, trends, and the relationships between performance 
and site specific conditions as well as manufacturing process variables. 
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